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ABSTRACT

Increasingly, the sophistication of rotorcraft flow simulation has become more complex, involving aerodynamically
interacting environments such as a helicopter landing on a ship deck. These problems involve solving the Navier-
Stokes equations on various grid types (structured, unstructured, or hybrid). As the complexity increases, the range
of length and time scales may vary significantly within the problem domain, making simulations more demanding
in terms of computational resources. To make RotCFD an affordable tool at the early stages of the design cycle,
RotCFD’s paradigm is to provide engineering solutions to complex problems in one computational environment.
The key to obtaining an engineering solution is to employ one or more of the following techniques: (a) higher order
schemes, (b) complex algorithms that exploit the physics intelligently, (c) error reduction techniques such as multigrid,
(d) adaptation automation, and (e) parallel processing. This paper focuses on the development of parallel processing
in RotCFD using Graphics Processing Units (GPUs) and the associated technical details, which show considerable

promise for computational efficiency and design.

INTRODUCTION

RotCFD is an Integrated Design Environment (IDE) centered
around a user-friendly Graphical User Interface (GUI) that fa-
cilitates engineering design using Computational Fluid Dy-
namics (CFD). CFD plays a significant and crucial role in the
design of modern rotorcrafts. The complexity and sophisti-
cation of rotorcraft flow simulation has continually increased,
requiring the simulation of environments such as a helicopter
landing on a ship, formation flight of multiple vehicles, and
brownout conditions due to landing on loose or sandy soil.

Making affordable engineering solutions to complex prob-
lems requires reduced computing resources, including com-
putation time. Several techniques exist to reduce computa-
tion time, which can be broadly classified as: (a) higher order
schemes, (b) complex algorithms that exploit the physics in-
telligently, (c) error reduction techniques such as multigrid,
(d) adaptation and automation, and (e) parallel processing.
These techniques are briefly introduced in the following sec-
tions, and the main focus of this paper is on the technique of
parallel processing. Specifically, this paper focuses on the de-
velopment of parallel processing in RotCFD using Graphics
Processing Units (GPUs) and the associated technical details.

Higher Order Schemes

Finite volume simulations require the domain to be discretized
as a set of contiguous smaller regions, called cells, that
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surround nodes about which the conservation equations are
solved. The flow variables, such as velocity and pressure, are
known at the nodes. However, their values also need to be
known at the individual cell boundaries for flux computations,
which are part of the solution process. The flux computation
at the cell boundaries involve the nodes adjacent to the cell
boundary, and the formulation can be mathematically thought
of as interpolation stencils. Involving more nodes in the sten-
cil may improve the order of accuracy at the cost of increased
computation. This technique in general increases the com-
putation per node, but decreases the overall number of nodes
necessary to retain solution accuracy. This is a purely mathe-
matical approach and is often used in CFD.

Intelligent Complex Algorithms

Rotor flows often involve incompressible, compressible, and
viscous regions in the solution domain. The algebraic equa-
tions that result from the discretization of the conservation
equations are non-linear and coupled. However, discrete
equations may not be available for all the variables, such as
in the case of incompressible flows, where pressure is avail-
able in the momentum equations but not in the continuity
equation. The effect of pressure on velocity is of primary
importance in incompressible flows. The continuity equa-
tion implicitly dictates the pressure field, yet pressure is not
a variable of the mass conservation equation. This necessi-
tates the manipulation of the algebraic equations into complex
algorithms for obtaining a solution to the conservation equa-
tions. The SIMPLE family of algorithms (Ref. 1) has popu-
larized the pressure-based schemes for incompressible flows.
The pressure-velocity coupling is resolved in SIMPLE and its
variants (SIMPLER, SIMPLEC) by obtaining an approximate



pressure correction field, which is used iteratively to correct
the velocity field and/or the pressure field to seek an overall
satisfaction of the conservation equations. The approximate
nature of the pressure correction equation is often attributed to
convergence issues. Alternate algorithms that are more stable
while still providing accurate solutions are essential for reduc-
ing the cost of design. One such approach for incompressible
flows is to use the Runge-Kutta algorithm, which provides re-
liable, accurate, and fast solutions without the need for ap-
proximate equations. Such algorithms need to be extended to
compressible and mixed regions for a complete solution of the
rotor problem in all regimes.

Error Reduction Techniques

The conservation equations are coupled, non-linear partial dif-
ferential equations. They are linearized during discretization
and made into simultaneous algebraic equations for digital so-
lution. The digital solutions require adjustments to correct for
the errors introduced in converting and digitally solving the
algebraic equations. The multigrid method, block correction
method (Ref. 2), and generalized minimal residual method
(GMRES) (Ref. 3) are some of the popular methods that have
been successfully used in the past, and they can reduce the
total time required to solve a problem using CFD.

Adaptation and Automation

Any CFD solution process starts with an initial set of values
on a grid that is not necessarily optimized for the solution,
since the solution is unknown a priori. Adaptation is a tech-
nique by which the grid is regenerated as the solution evolves
using the gradient of the solution to adjust the density of the
grids within the domain. Adaptation is particularly well suited
to unstructured grids and is routinely used in the unstructured
solvers in RotCFD. Adaptation can reduce the overall com-
putation time despite the necessity to regenerate grids quite
often. This process is successful only if the adaptation and
solution processes are automated.

Parallel Processing

Modern computers have many computing resources in the
form of Central Processing Units (CPUs) and/or Graphics
Processing Units (GPUs). These units are capable of perform-
ing computations simultaneously. However, CFD algorithms
generally solve either one node or one line of nodes at a time.
Therefore, only a few of the processing unit cores are active at
any given time, while the rest remain idle. Parallel processing
is an approach to resolving this problem of idle cores by mak-
ing them all compute simultaneously. From the CFD point
of view, data dependency is the main obstacle to parallel pro-
cessing using CPUs, GPUs, or both. In other words, solution
algorithms need to be written in such a way that updating the
value at a node does not depend on neighboring nodes, which
also require simultaneous updating. Parallel processing using
GPUs is the central theme of this paper, and the aforemen-
tioned ideas will be further elaborated later on.

ROTCFD: A DESIGN TOOL

Rajagopalan et. al. have previously introduced the paradigm
of RotCFD (Refs. 4-6), along with validations of the tool’s
capabilities. A schematic of the RotCFD IDE architecture is
shown in Figure 1. A brief introduction to the principal func-
tional units of RotCFD are presented in the following sections.
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Fig. 1. RotCFD Architecture and Component Interaction

Results and
Reporting

Graphical User Interface (GUI)

The RotCFD GUI allows the user to collect information and
assemble the problem. The RotCFD work space is shown in
Figure 2.

Main Toolbar
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Fig. 2. RotCFD Work Space

Controller

The controller in RotCFD is comparable to the brain of a liv-
ing system. The controller dictates the sequence of the various



steps that RotCFD takes to obtain a solution. For example,
the RotCFD controller is used to call the various grid gener-
ators and flow solvers from the GUI. For problems with grid
adaptation, the controller periodically calls the grid generator
as the flow field develops. For an unsteady inflow the con-
troller is used to reset the boundary conditions of the flow. It
can be used to batch a finite number of cases with paramet-
ric variation, such as a collective pitch sweep. It can also be
potentially used in the future to make function calls for an op-
timizer, where an unknown arbitrary number of cases need to
be run based on the solution as it evolves.

Problem Specification

Problem specification involves all pre-processing, such as de-
scribing the geometries and performance specifications for the
problem. Geometries include scene objects, which are gener-
ally environment objects such as buildings, and configuration
geometry, which include the rotors, fuselage, control surfaces,
etc. Performance specifications include the set controls and
equilibrium conditions. Figure 3 shows how a configuration
can be copied and manipulated in RotCFD.

Computation

The flow computation involves several steps. A computa-
tional grid is generated based on the geometry of the problem.
Several grid types are available in RotCFD, each of which is
suited to a different type of problem. These grid types are
shown in Figures 4-8. Next, the flow is initialized within the
domain based on the specified flight condition and boundary
conditions. Finally, the flow solver is run to obtain a solution
on the grid.

Results and Reporting

As the flow solver is running, real-time analysis and interme-
diate results are given. Once the flow simulation is complete,
a report is generated and final solutions are available to ana-
lyze in the GUL

PARALLELIZATION

Parallelization involves modifying a serial solver to suit the
hardware being used. The current version of RotCFD uses the
hardware generally available in the workstation class of com-
puter systems in the commodity market. Therefore, RotCFD
uses OpenMP to utilize multiple CPU cores and OpenCL
to use the cores available in the system’s GPU. In order to
provide the maximum performance on all desktop platforms,
RotCFD allows the user the option to run in parallel on the
CPU or GPU. If the machine contains multiple CPU cores,
then CPU-based OpenMP parallelization can be used. If
the machine contains a compatible graphics card, then GPU-
based OpenCL (Ref. 7) parallelization can be used. By de-
fault, RotCFD uses the fastest available run option. In the
following sections important aspects of parallel algorithms in
RotCFD and GPU related hardware characteristics are dis-
cussed.
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Fig. 4. RotAXC Grid

Fig. 5. Rot3DC Grid

Fig. 6. RotUNS Grid (front)

Parallel Algorithms

One of the important characteristics of the code modification
for parallelization is to eliminate data dependency, which re-
quires special algorithm modifications to the flow solver. The
parallel algorithms used in RotCFD are discussed in the fol-
lowing paragraphs.

Fig. 7. RotUNS Grid (side)

Fig. 8. RotVIS Grid

Greedy Coloring Algorithm The Greedy coloring algo-
rithm (Ref. 8) was implemented in RotCFD for both cells
and faces. The coloring algorithm uses various cell and face
queues to generate the coloring. It then automatically chooses
the coloring layout that should produce the best solver perfor-
mance. This allows the solver routines to operate in parallel
for both OpenMP and OpenCL. Once colors are assigned to
all the cells and faces, the cells/faces within a given color can
be computed independently from each other in parallel. A
sample coloring is shown in Figure 9.

Solver Algorithms Some algorithms, such as the Gauss-
Seidel and tridiagonal solver, cannot simply be calculated
using the coloring approach since they require updated val-
ues from neighboring cells. The tridiagonal solver was re-
placed with a Parallel Cyclic Reduction (PCR) solver (Ref. 9).
The PCR algorithm decomposes a tridiagonal matrix into two
halves, each of which maintains a tridiagonal form. This pro-
cess is repeated on the smaller matrices until #n sub-matrices
are obtained. The reductions require additional computation
O(nlog, n), but allows for n-parallelism. As a result, a PCR
tridiagonal solve can produce computation times proportional
to log, n.

The Gauss-Seidel solver was reformulated to compute each
color and then use the updated color groups to compute the



Fig. 9. Greedy coloring scheme

next color instead of individual cell values. The Alternating
Color Direction technique is similar to the ADI technique pre-
viously used, and it is formulated as follows:

1. Each cell within a color is computed using the neighbor-
ing cells.

2. Each cell within the remaining colors is updated.

3. The cells within the original color are updated again us-
ing the newly updated values.

4. The colors are swept from 1 to N (where N refers to the
maximum number of colors in a domain) and then in the
reverse order from N to 1 for each solver iteration, and
all cells within a color are computed in parallel.

HARDWARE CONSIDERATIONS

In this section, some important hardware considerations for
GPU computing are presented. RotCFD is a tool intended to
be used for preliminary design using commodity hardware,
for which a sizable number of choices exist. These choices
may limit the performance of GPUs, and it may be difficult or
expensive to retrofit the machine after the initial purchase if
the user discovers that the GPU performance is limited. For
example, modern GPU units can require significant amounts
of power, and the motherboard and power supply in the system
must be capable of providing the GPU’s power requirement at
peak performance. When multiple GPUs are used, adequate
cooling and airflow through the system have to be considered
so as not to limit the peak performance of the GPUs. The fol-
lowing sections discuss additional important factors for GPU
computing.

GPU-Motherboard Interaction

One important factor in GPU computing is the PCI Express
(PCIe) bandwidth and the number of lanes of communication
available on the motherboard between CPU and GPU. Lanes
are parallel data pathways that are used for sending data and
commands to and from the GPU. The number of lanes also
affects the performance of the graphics card.

A schematic for PCle lanes is shown in Figure 10. Most newer
graphics cards support PCle v3.0 and have 16 lanes. How-
ever, this is only part of the equation. For maximum perfor-
mance, the motherboard and CPU have to be able to support
the latest PCI version and lanes. PCle v1.0 has a maximum
throughput of 250 MB/s per lane, v2.0 is S00MB/s, and v3.0
is 1GB/s. PCle versions are backwards compatible. As a re-
sult, the graphics card, motherboard, and CPU will use the
highest available version common to all the components. For
example, if the GPU and CPU support PCle 3.0, but the moth-
erboard supports PCle 2.0, all devices will run at PCle 2.0
speed. This has a significant effect on the data transfer speed
and kernel queuing speed. If multiple GPUs are being used,
it is important that the CPU supports enough total PCle lanes
to make effective use of the GPUs. Intel’s IvyBridge based
CPUs only support 16 PClIe lanes, allowing you to run one
GPU at full speed. The updated Intel IvyBridge-E allows 40
PClIe lanes, allowing two full speed GPUs and one half-speed
GPU. The current work primarily used Dell 5810 computers,
the motherboard of which is shown in Figure 11, which allows
for up to 40 PCle lanes.

Graphics Card Specifications

Other important factors in GPU computing are the graphics
card specifications: available memory, core count, and speed.
Graphics card memory size is typically the largest limiting
factor in the practical size of cases that can be run. The avail-
able GPU memory has been steadily increasing over the past
years, allowing for larger cases to be run on the GPU. The
latest generation of Nvidia graphics cards suitable for GPU
computation have 2-24 GB of memory. By utilizing single
precision numbers and only transferring the required data to
the GPU, RotCFD is capable of running cases with millions
of cells on a typical desktop. This capability will continue
to allow larger cases and faster run times as the hardware
improves. However, many CFD problems can require grids
larger than what can be run on current GPUs. The mother-
boards of many commodity systems can support around 10
times the memory of the most expensive Nvidia cards. There-
fore, problems that require very large grids currently need to
be run on the CPU using OpenMP, which is an option avail-
able in RotCFD. Future development could help with this is-
sue by utilizing the memory of multiple GPU units.

For most graphics cards, core count and speed can be sum-
marized by the cards’ maximum floating-point operations per
second (FLOPS). Most computational problems are limited
by the speed of calculations. As a result, the available FLOPS
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will be a primary factor in the performance. However, compu-
tational problems such as CFD can also be memory intensive.
In these cases, performance can be bottlenecked by either the
memory bandwidth of the GPU or the transfer speeds of the
PCle lanes.

RESULTS

The results presented in this section show the performance
on various graphics cards for an isolated rotor case using
RotUNS, the RotCFD unstructured flow solver. The test grid
of 1,330,000 cells was run for 700 time steps. Unless oth-
erwise specified, the test machine contained a 6 core Intel®
Xeon® E5-1654 V4 3.6 GHz processor. All GPU computa-
tions were performed in single precision. Each GPU/CPU set-
up was run twice, and the average time was taken to determine
the run time. Tables 1 and 2 contain the specifications for the
graphics cards used for the current work that were manufac-
tured by Nvidia, and Tables 3 and 4 contain the specifications
for the graphics cards that were manufactured by EVGA.

Table 1. Nvidia GPU Card Specifications

GPU Card CUDA Cores Memory Cost
GTX 1060 1280 6 GB $249
GTX 1070 1920 8 GB $379
GTX 1080 Ti 3584 11 GB $699
GTX Titan X 3584 12GB  $1200

Table 2. Nvidia GPU Card Specifications (cont.)

Single Precision Memory
GPU Card TFLOPS Bandwidth (GB/s)
GTX 1060 3.855 192
GTX 1070 5.783 256
GTX 1080 Ti 10.609 484
GTX Titan X 10.157 480

Table 3. EVGA GPU Card Specifications

GPU Card CUDA Cores Memory Cost
GTX 1050 Ti 768 4 GB $169
GTX 1060 1280 6 GB $269
GTX 1070 1920 8 GB $439
GTX 1080 2560 8 GB $559
GTX 1080 Ti 3584 I1GB  $749

GPU Manufacturer Comparison

The first comparison made was between similar cards made
by different manufacturers. In particular, the standard Nvidia
card models GTX 1060, GTX 1070, and GTX 1080 Ti were
compared against the superclocked versions manufactured by
EVGA. Figure 12 shows the run times, and Figure 13 shows
the speed-up relative to serial. The superclocked EVGA cards

Table 4. EVGA GPU Card Specifications (cont.)

Single Precision Memory
GPU Card TFLOPS Bandwidth (GB/s)
GTX 1050 Ti 1.981 112.16
GTX 1060 3.855 192
GTX 1070 5.783 256.3
GTX 1080 8.228 320
GTX 1080 Ti 10.609 484

were slightly faster than the standard Nvidia cards, but only
by a small margin of 1-2%.
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Effect of CPU in GPU Calculations

To determine the effect of CPU speed on GPU calculations,
cases were tested on two other CPU configurations. The first
alternative machine contained a 10 core Intel® Xeon® E5-
2687W V3 3.1 GHz processor. Cases were run on the EVGA
GTX 1070. The average run time on the alternative machine
was 3935 seconds. Compared to the base run time of 3957
seconds, there was a speed increase of only 1.006x.

The second alternative machine contained an 18 core Intel®
Xeon® E5-2697 V4 2.3 GHz processor. Cases were run on
the Nvidia GTX 1070. The average run time on the alternative
machine was 3924 seconds. Compared to the base run time



of 3969 seconds, there was a speed increase of only 1.011x.
Therefore, the number of cores in the machine’s CPU config-
uration has very little bearing on the final run time if the case
is to be run on the GPU.

GPU Card Comparison

Speed-up Comparison This section describes the difference
in speed-up between all of the graphics cards used in the cur-
rent work. Figure 14 shows the run times for each of the
graphics card models tested, and Figure 15 shows the speed-
up relative to serial.
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Fig. 15. Speed-up comparison for various graphics cards

Figures 16-19 show the speed-up plotted against various card
specifications. Figure 16 shows the speed-up plotted against
the number of CUDA cores. Figure 17 shows the speed-up
plotted against the single precision GPU speed. Figure 18
shows the speed-up plotted against the GPU memory band-
width. Figure 19 shows the run time plotted against the cost.
Figure 20 shows the speed-up plotted against the cost of each
graphics card, and Except for the EVGA 1080, which is an
outlier for all of the metrics shown, the general trend for
speed-up is logarithmic growth or decay in nature.

Speed-up vs. Serial Speed-up vs. Serial
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Maximum Grid Size Comparison The amount of memory
available on the graphics card limits the maximum grid size
that can be run. This maximum grid size for an isolated ro-
tor case using RotCFD was found for each card. Figure 21
shows the maximum grid size plotted against the cost of each
graphics card.
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Fig. 21. Maximum grid size vs. Cost

CONCLUSIONS

When using GPU computation for RotCFD, the most im-
portant factors for overall performance were the number of
CUDA cores, GPU computational speed, and GPU mem-
ory bandwidth. The CPU’s clock speed and the number of
CPU cores available generally showed very little influence on
the overall performance. Superclocked GPUs showed only
marginal improvements on speed. Currently, the most lim-
iting factor for GPU computations is the available graphics
memory, limiting the size of the computation.

Although the CPU does not have much influence on the per-
formance, several hardware factors still need to be considered
when running GPU simulations. All hardware should be care-
fully paired to support the same PCle bus version. Otherwise,
the transfer speed to the GPU will be limited by the lowest
supported version. Additionally, the CPU should have enough
available power to run the graphics card. The power supply on
the motherboard required for the graphics cards used in the
current work ranged from 300-600 watts.

In general, GPU computations provide an optimal and afford-
able alternative to high performance computing if the size of
the problem can be accommodated within the GPU’s mem-
ory. Further improvements could be made by using shared
memory and MPI technology, which would allow RotCFD to
be designed to use multiple GPUs to facilitate faster design
cycles.
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